

Advanced Ceramics

Advancing your life

Expertise with more than 100 years of know-how in technical ceramic

The Bosch Group is a leading global supplier of technology and services. It employs roughly 401,300 associates worldwide (as of December 31, 2021). According to preliminary figures, the company generated sales of 78.8 billion EUR in 2021. Its operations are divided into four business sectors: Mobility Solutions, Industrial Technology, Consumer Goods, and Energy and Building Technology. The Bosch Group comprises Robert Bosch GmbH and its roughly 440 subsidiary and regional companies in some 60 countries.

Ceramic production has a long tradition with Bosch. At the beginning of the 20th century, series production of the groundbreaking Bosch spark plugs began, and in 1939 Bosch filed its first patent for ceramic injection molding (CIM). Advanced Ceramics is part of the Bosch Group, which drives business innovation and supports new business ideas as a 100% subsidiary of Robert Bosch GmbH.

Manufacture and technology

Bosch Advanced Ceramics has a wide range of technologies for innovative ceramic solutions

3D Printing

Ceramic injection molding

Green and hard machining

Laser processing

Pressing

Functional coatings

Cofiring ceramic processing Quality assurance

Certifications

High Bosch quality standard and high process robustness

ISO 9001 for comprehensive quality management

IATF 16949 Automotive quality management *

ISO 13585 Medical devices quality management *

ISO 14001 for environmental management *

OHSAS 1800 for occupational health and safety management *

ISO 50001 for energy management *

^{*} Bosch plants are certified according to various standards

Materials

Bosch Advanced Ceramics chooses the right composition for various applications

For ceramic components, the composition of the material is crucial. By choosing and adjusting the suitable material composition, the material can be perfectly adapted to the ambient conditions. The properties are to be regarded as indicative values, which are transferable to real components only to a certain extent. We are glad to provide our expertise to assess the suitability of a material for your practical application.

Advanced ceramics datasheet of our oxide ceramics

Material Specification	Alumina				Zirconia		Composites	
	Al ₂ O ₃ 96,0%	Al ₂ O ₃ > 99,7%	Al ₂ O ₃ > 99,8% coarse grain	Al ₂ O ₃ > 99,8% fine grain	ZrO ₂ 3,7mol% Y ₂ O ₃ -PSZ	ZrO ₂ 3 Y ₂ O ₃ TZP	ATZ	ZTA
Density [g/cm³]	3,8	3,92	3,92	3,96	6,05	6,05	5,5	4,1
Hardness HV [GPa]	14	17	14	14	13	15	14	17
Compressive Strength [MPa]	2800	2800	2600	2600	2400	2300	2300	2600
Flexural Strength 4-point [MPa]	400	440	395 (3-Point)	430	1100	930	1000	600
Fracture Toughness K _{IC} [MPa*m ^{1/2}]	4.2	4.3	5	5	10.5	10	6.5	5
Modulus of elasity [GPa]	340	380	300	300	210	205	220	360
Surface Roughness[µm]	Rz 5,1*	Rz 3,6*	Ra 0.9	Ra 0,4	Rz 3.6*	Ra 0.6	Rz 3.6*	Rz 3.6
Thermal Expansion Coefficient [10 ⁻⁶ /K]	8	8	8	8	10	10	9	9
Thermal Conductivity [W/mK]	24	30	37	37	3	3	6	25
Electr. Resistance at 20°C [Ωm]	1014	1014	10 ¹⁴	1014	10 ⁹	1010	10 ⁹	10 ¹⁴
Electr. Resistance at 600°C [Ωm]	10 ⁶	10 ⁶	10 ⁶	10 ⁶	104	104	104	10 ⁶

^{*} depending on the technology and process

Properties of technical ceramics

High temperature resistance

The heat resistance reaches far beyond 1000°C - technical ceramics are thus often the only alternative for high temperature applications.

Hardness

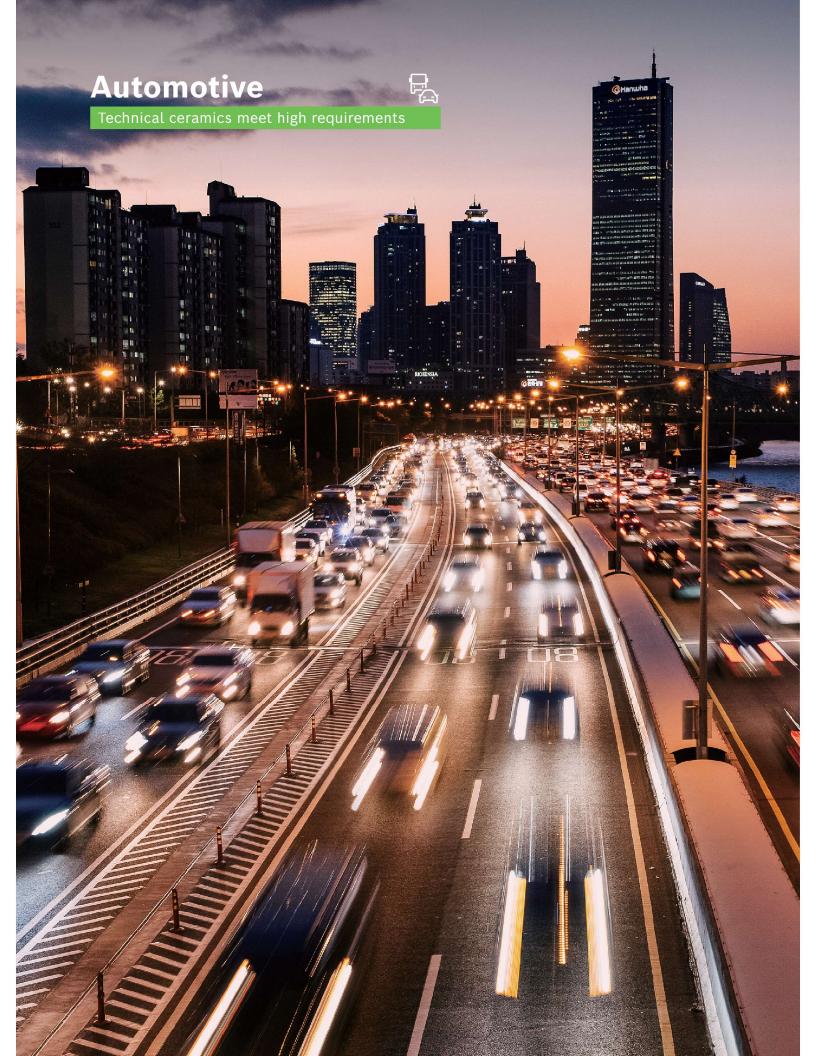
The extreme hardness of technical ceramics makes them suitable for handling high pressure and adverse conditions.

Good insulation properties

Technical ceramics display both electrical and thermal insulation properties.

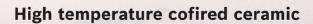
High wear resistance

The excellent mechanical properties of technical ceramics ensure minimal abrasion and long service life, even under harsh conditions.


Chemical resistance

Technical ceramics are resistant to many chemicals such as acids and brines, and are therefore corrosion resistant.

Biocompatibility


Technical ceramics are suitable both for the medical and food sectors: the materials are 100% biocompatible.

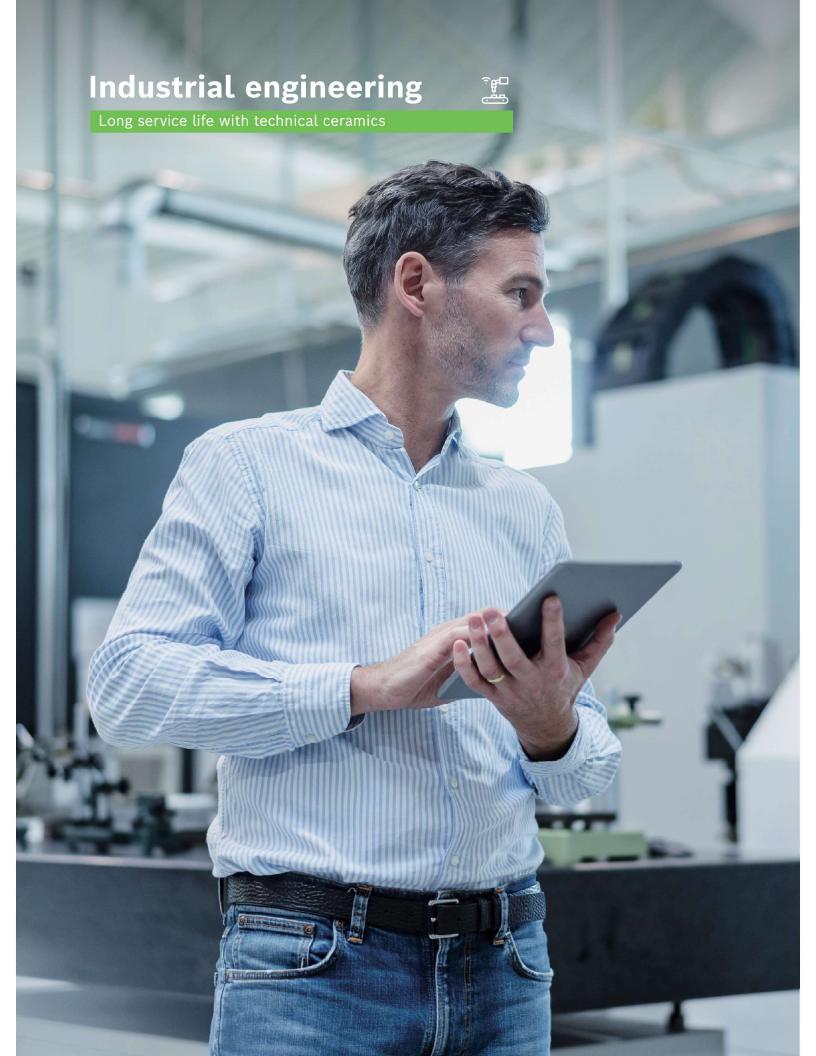
Sensor contact holder

- Alumina ensures high heat & corrosion resistance
- Complex designs realize tiny channels for connector pins

- Multilayer ceramics of alumina & zirconia
- Well controled signal conductor lines width

Low temperature cofire ceramic

- Glass-Al₂O₃-ceramic, Sintered at 850-900°C, coated with Ag, AgPd
- Well controled signal conductor lines width resistors with high power load and excellent accuracy



Sparkplug ceramic

- Alumina ensures high dielectric and mechanical strength
- High quality ceramic for long service life

Sealing plate, valve and anti-wear components

- Alumina and zirconia ensure high wear resistance and electrical insulation
- Precise dimension, high hardness and polished surface quality

Jets or nozzles for dispensing

- Complex shape in series production made of alumina
- High dispensing behavior due to optimized flow design and smooth inner surface

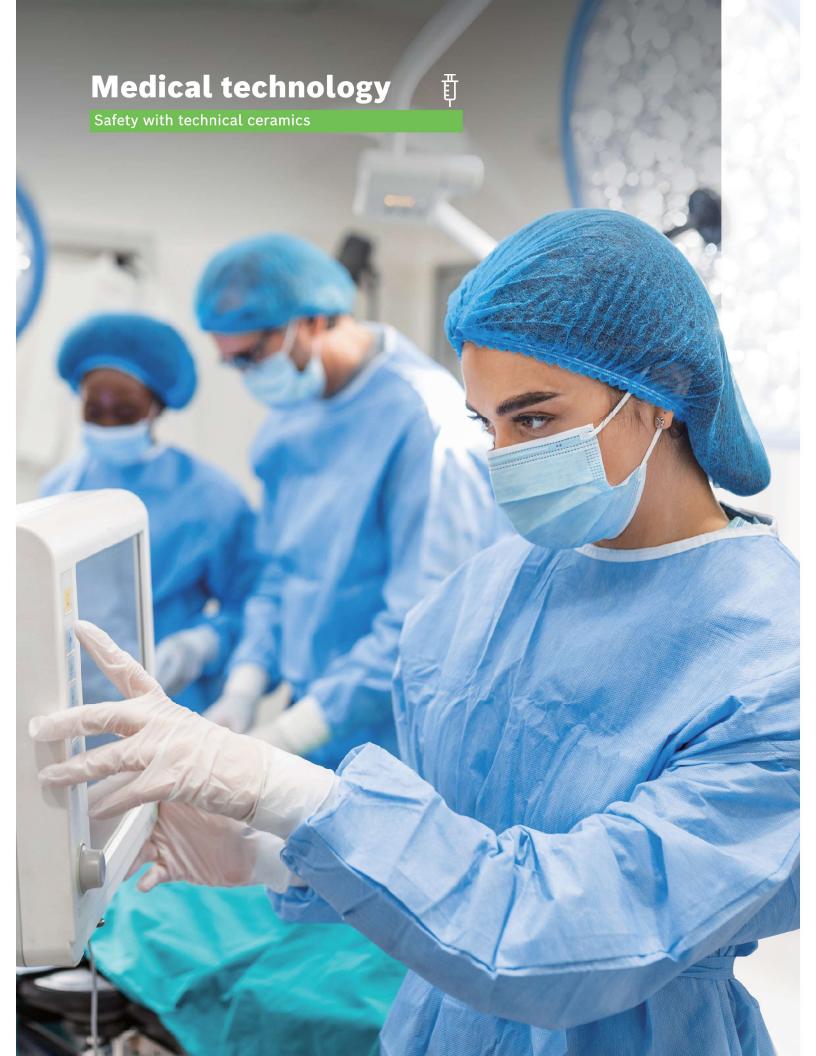
Ceramic mixer components

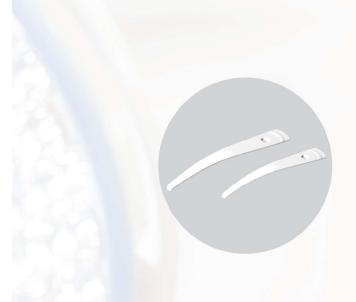
- Alumina made by 3D printing realizes fine and precise flow channels
- Smooth surface enables less contaminations and less flow losses

Turbocompressor of heat pumps

- Alumina with good thermal and wear resistance
- High design complexity and tolerance accuracy

Ceramic heat exchanger


- Alumina made by 3D printing used in energy industry
- Complex and functional design ensure high heat exchange


Microreactor for chemical industry

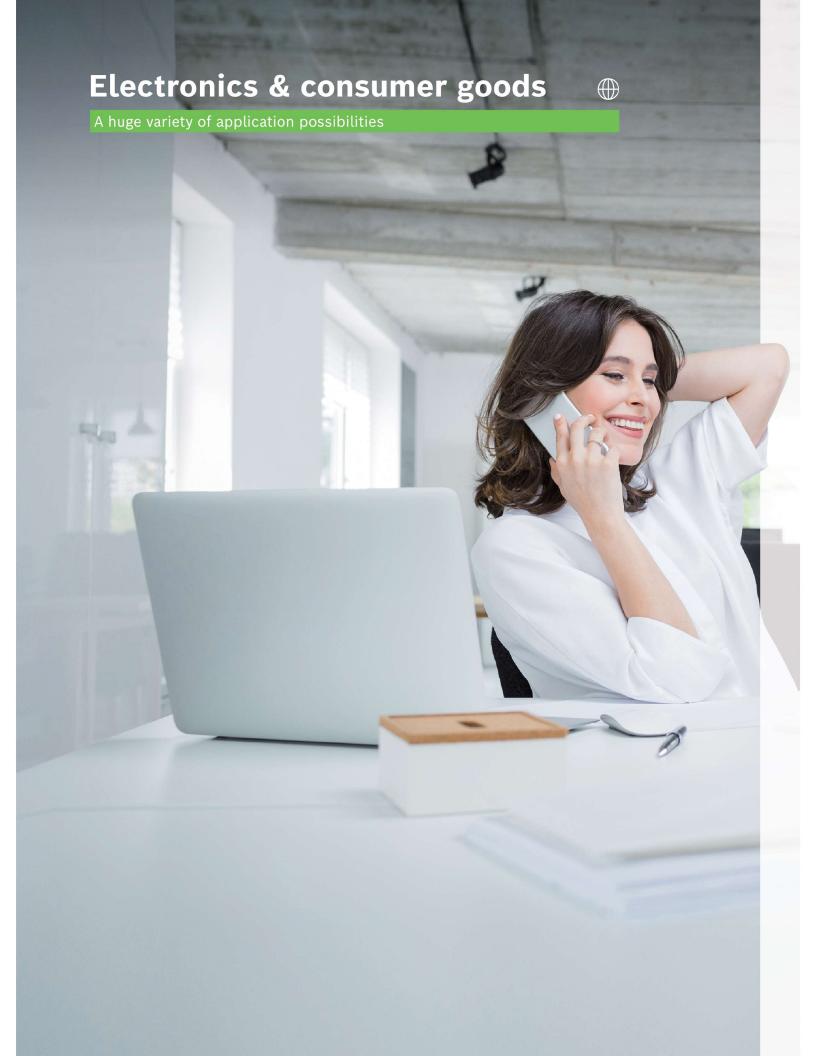
- Heat and corrosion resistance, low thermal expansion
- Electrical insulation capability
- Internal complex structures and high dimensional stability

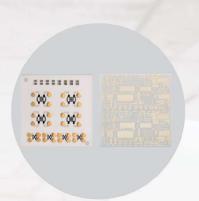
Anti-wear ceramic components

- Alumina and zirconia ensure high wear resistance
- Advanced manufacturing for accurate running fit

Scissor blades

- Tailor-made material ensures high wear resistance and enhanced lifetime
- High tolerance accuracy for surgical instruments


Ceramic carriers for medical instrument


- Good heat dissipation
- Creative design with laser treatment

Ceramic sealing disk, valves

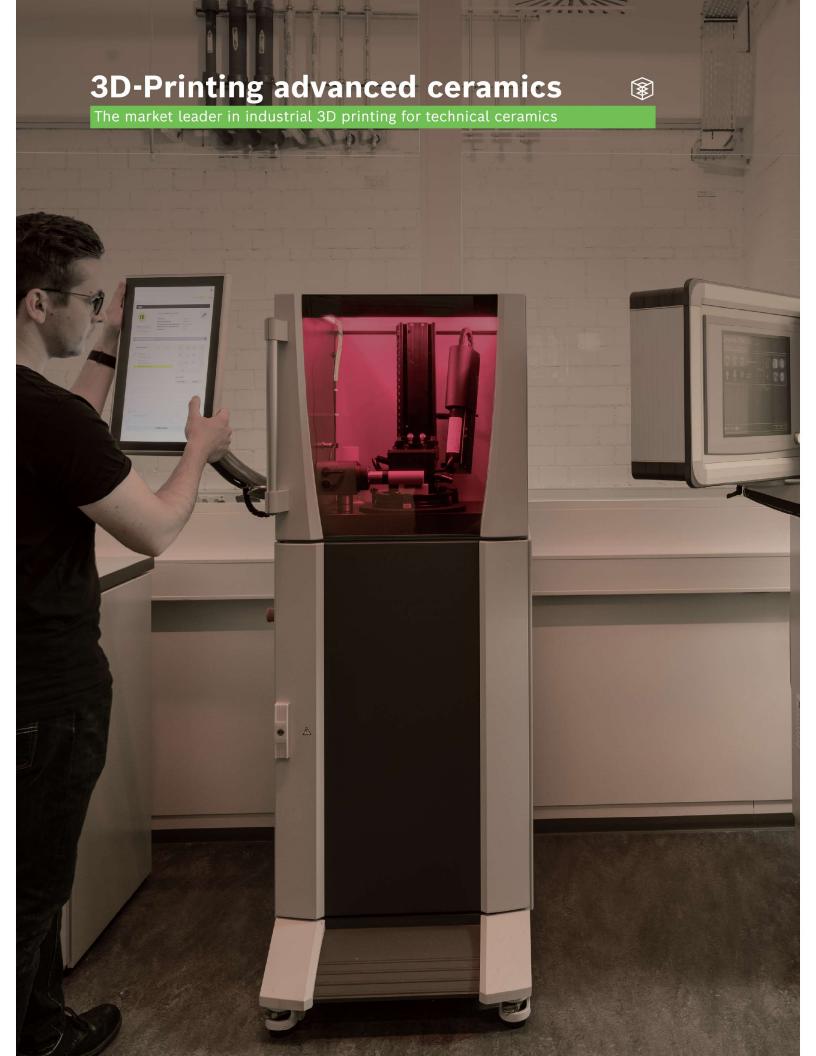
- Biocompatible materials and smooth surface
- Chemical resistance realizes precise medical analysis

Functional coatings on ceramic

- Ceramics, machining, cleaning, different coating technologies
- Applied in Lambda Sensors, pressure sensors, particle sensors, etc

Optical lens carrier

- Alumina for laser distance measuring device
- Tailor-made material shows enhanced lifetime
- High wear resistance, tolerance accuracy and thermal stability


Coffee grinder

- Stable grinding efficiency beyond metal materials
- Endurable, wear resistant to keep coffee flavor
- Biocompatible materials and stable use in corrosive condition

Water tap and valve for coffee and washing machine

- Alumina ensures high wear and good thermal stability
- Enhanced lifetime and complex structure can be achieved

Applications

Flexible designs without tool investments for

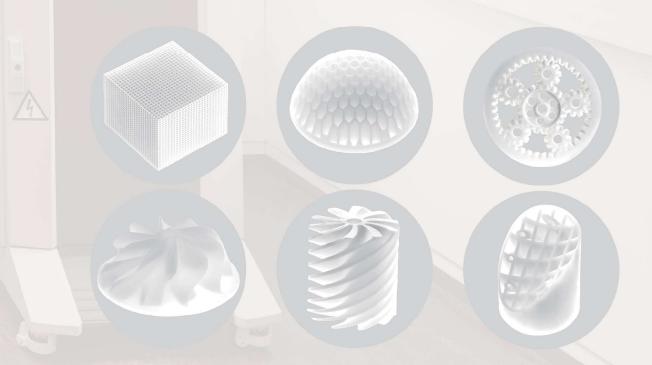
- 1. Prototypes
- 2. Small parts
- **3.** Complex geometries **4.** Small quantities

Properties of 3D-printing parts

Surface roughness

Directly after sintering without post processing

- Alumina up to Ra = 0,6 Rz = 3,9
- Zirconia up to Ra = 1,42 Rz = 6,9


Dense components

- Dense microstructure
- >99,4% of theoretical density
- One of few 3D-methods for production of dense parts

Highly complex geometries

- Alumine: 51mm x 93mm x 247mm (XYZ)
- Wall thickness 0,12 ... 4 mm
- After heat treatment ±0,5% of nominal size

Research & service

A team with experience and competence, your full-service partner for your product

Design development

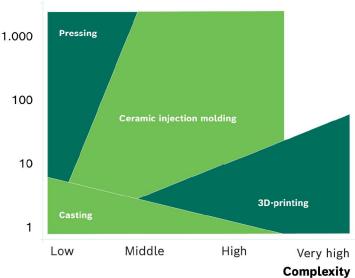
Appropriate to ceramics and manufacturing requirements

Agile prototyping

Rapid prototyping by 3D printing of functional ceramic parts

Inhouse engineering know-how

Flexible, self-developed, standardized, Efficient


Quality assurance

According to the high-quality standards of Bosch and your customer requirements

Outstanding technology portfolio for maximum flexibility

We offer more than just manufacturing: our commitment to quality and the intensive support for our customers and their products during the engineering process complete Advanced Ceramics' range of services into a full-service package

Quantity [Thousand pieces]

Zama EVO MAZS - F.

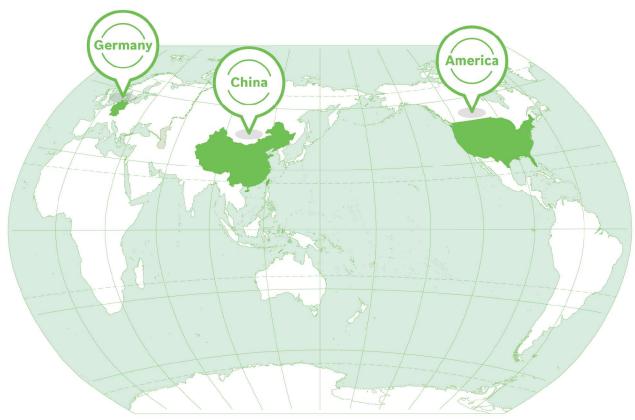
Worldwide, 1,800 highly specialized associates work for Bosch to search for technological breakthroughs, collaborating in an international research network with more than 700 research institutions, universities and other partners. Advanced Ceramics takes advantage of the wide technological and industry-specific expertise of Bosch in research for enhancing the technical ceramics. Just contact us, we are pleased to send you our solution!

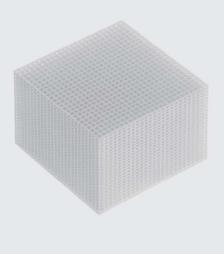
Global footprint

Bosch Advanced Ceramics is always in touch with customer worldwide

We bring our customers the combined competencies from various Bosch business areas and plant. In this regard we work closely with the production plants and the Bosch Research Center in Renningen. Advanced Ceramics coordinates with the various parties, always remaining in touch with the customer.

R&D center


Manufacturing plants


Sales offices

Germany Campus Renningen Germany Blaichach Germany Immenstadt (Head Office)

> China Shanghai

America Farmington Hills

Contact info

Bosch Advanced Ceramics

Robert-Bosch-Straße 1 87509 Immenstadt

Phone: +49 711 811 - 13891

Advanced.ceramics@bosch.com

www.bosch-advanced-ceramics.com